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Abstract

The sequential assignment of backbone resonances is the first step in the structure determination of proteins by
heteronuclear NMR. For larger proteins, an assignment strategy based on proton side-chain information is no
longer suitable for the use in an automated procedure. Our program PASTA (Protein ASsignment by Threshold
Accepting) is therefore designed to partially or fully automate the sequential assignment of proteins, based on the
analysis of NMR backbone resonances plus Cβ information. In order to overcome the problems caused by peak
overlap and missing signals in an automated assignment process, PASTA usesthreshold accepting, a combinatorial
optimization strategy, which is superior to simulated annealing due to generally faster convergence and better
solutions. The reliability of this algorithm is shown by reproducing the complete sequential backbone assignment
of several proteins from published NMR data. The robustness of the algorithm against misassigned signals, noise,
spectral overlap and missing peaks is shown by repeating the assignment with reduced sequential information and
increased chemical shift tolerances. The performance of the program on real data is finally demonstrated with
automatically picked peak lists of human nonpancreatic synovial phospholipase A2, a protein with 124 residues.

Introduction

The sequential assignment of the protein backbone
signals is the basic step in the NMR structure de-
termination process for larger proteins. Since this
is a tedious and time-consuming task, automation
is highly desirable. For small proteins, numerous
programs have been developed to partially or fully
automate the assignment using the classical strat-
egy first outlined by Wüthrich (1986); for a de-
tailed review see Zimmerman and Montelione (1995).
This approach identifies the proton spin systems in
homonuclear COSY/TOCSY experiments and then
connects them sequentially via information obtained
from NOESY experiments. While suitable for smaller
proteins (<10 kDa), this approach usually fails for
larger proteins due to increasing signal overlap. The
strategy can be expanded to larger proteins by the use
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of 3D 15N-edited TOCSY and NOESY experiments,
as demonstrated by the program ALFA (Bernstein et
al., 1993). However, this extension is again limited to
ca. 12–15 kDa proteins, due to the relaxation-sensitive
1H,1H-TOCSY transfer. Experiments like HC(C)NH-
TOCSY and HC(CO)NH-TOCSY (Logan et al., 1992;
Montelione et al., 1992) rely on the faster13C,13C-
TOCSY transfer and provide a unique combination of
sequential proton spin system information. But even
this approach requires deuterated samples when ap-
plied to proteins in the 20 kDa range or larger (for a
review see Sattler and Fesik (1996)).

Therefore, a generally applicable program for the
automated assignment of larger proteins should not
rely on side-chain information in the initial sequential
assignment process. More suitable is a suite of het-
eronuclear 3D experiments tracing the protein back-
bone (Grzesiek and Bax, 1992), including Cβ infor-
mation (Wittekind and Mueller, 1993; Yamazaki et al.,
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1994). For example, recently the backbone assignment
of the 37 kDa Trp repressor / DNA complex could
be manually obtained with this strategy on deuterated
samples (Shan et al., 1996).

Common processing software, like Felix (MSI/
Biosym), Triad (Tripos), Aurelia (Neidig et al., 1995),
and Xeasy (Bartels et al., 1995), usually provide only
a graphical interface for the data. They mainly offer
sophisticated book-keeping to aid the human ‘step-
by-step’ way of assignment, while their facilities for
automated assignment are limited. To automate cer-
tain tasks, some packages (e.g., Triad, Felix) provide
built-in macro languages. The program GARANT
(Bartels et al., 1996) uses a totally different approach
to sequence-specific assignment. It mainly performs
an intelligent peak-picking of the NMR spectra, based
on a structure homology approach. It is therefore lim-
ited to families of homologous proteins, where the
error rate for the calculation of chemical shifts from
secondary structure predictions is low.

Even when tracing the backbone connectivities,
programs have to deal with the ambiguity of experi-
mental data, caused by heavy signal overlap in larger
proteins. Here programs following a direct approach
like the CONTRAST macro set (Olson and Markley,
1994) or AUTOASSIGN2 (Zimmerman and Monte-
lione, 1995) can fail due to the ‘combinatorial explo-
sion’ problem, where the decision tree created from all
possible neighbors is not solvable anymore. The use of
4D experiments (Friedrichs et al., 1994; Meadows et
al., 1994) to solve the overlap problem is limited be-
cause of reduced signal intensity resulting in missing
peaks and because of restricted digital resolution (Bax
and Grzesiek, 1993).

In order to reach an assignment for heavily over-
lapped data, combinatorial minimization strategies as
used in the program ALFA (Bernstein et al., 1993)
seem to be more promising, especially when applied
to the backbone data, as shown by the program ALPS
(Morelle et al., 1995) or more recently in the pro-
gram of Lukin et al. (1997). A limitation of the
classical simulated annealing procedure (Kirkpatrick
et al., 1983) is the slow convergence of the algo-
rithm. In larger proteins, the solution space grows
rapidly with the number of residues and cannot be
searched extensively in practical time scales, unless
additional constraints are used to reduce the search
space (such as the protein sequence in combination
with the secondary structure (Lukin et al., 1997)).

The combinatorial minimization strategy used
in PASTA, called threshold accepting(Dueck and

Scheuer, 1990; Dueck et al., 1993), has proven to be
significantly faster and providing better solutions than
simulated annealing in solving thetraveling salesman
problem(TSP (Lawler et al., 1985)) and in structure
minimizations (Morales et al., 1992). The complexity
of the backbone assignment problem for proteins is
comparable in size to the mentioned TSP. Therefore,
it is likely that threshold accepting will succeed in
protein backbone assignment with a minimum num-
ber of restraints. For example, the determination of
the amino acid type, based on the Cα-Cβ chemical
shift combination, is quite ambiguous and therefore
not essential for the primary sequential assignment.
In this paper we will show on simulated data that the
algorithm finds the global minimum, i.e., the correct
assignment for several published proteins. It is further
shown that the correct backbone assignment with auto-
matically picked peak lists from triple-resonance spec-
tra of human nonpancreatic synovial phospholipase
A2 (hnps-PLA2) (124 residues) can be achieved just
with sequential backbone (Cα/Cβ/CO) information.

Materials and Methods

Description of the algorithm
PASTA uses ASCII peak lists in the same format as
they are exported by common NMR processing soft-
ware (Felix (MSI/Biosym), Triad (Tripos)). Due to the
expected overlap of sequential information, the pro-
gram is written to use any combination of Cα, Cβ, CO,
and Hα chemical shifts as source of information for
the sequence-specific assignment. The flexible design
of the program will accept all possible combinations
of common 3D spectra. The processing of data from
new experiments providing suitable information can
be easily implemented.

First, an initial set of pseudo-residues (i.e., data
structures to be filled with the backbone information
based on1HN/15N pairs) is created from the peak lists
of the 15N-HSQC and/or HNCO spectra. Intraresid-
ual and sequential information (i.e., Cα, Cβ, CO, and
Hα shifts) is then automatically added by searching
the peak lists of the appropriate 3D triple-resonance
spectra for the corresponding1HN/15N pairs. In gen-
eral, spectral information such as HNCACB and
HN(CO)CACB data is combined to enable the pro-
gram to uniquely distinguish between the (i) and (i−1)
signals of a1HN/15N-pair. If this discrimination is not
possible due to missing (i−1) information, then (i)
and (i−1) signals are distinguished according to their
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Figure 1. Assignment cycle of PASTA. An initial pseudo-residue list is created from the peak lists of the15N-HSQC or HNCO spectra.
Additional information is added by searching the peak lists of the appropriate 3D experiments. The refinement of the list is done iteratively with
the use of the assignment routine.

intensities (implemented for Cα, Cβ, and Hα). Noise
ridges in the spectra interfering with the identification
of real cross peaks or missing signals are pointed out to
the user by the program. Chemical shift offsets in any
dimension between the different input spectra can be
corrected with user given values, relative to the chemi-
cal shifts stored in the pseudo-residue list. A flow chart
displaying the steps of the assignment process with
PASTA is shown in Figure 1.

Our program can also use the shift patterns of
Cα and Cβ to perform an amino acid type determi-
nation (Grzesiek and Bax, 1993) based on published
randomcoil shifts (Wüthrich, 1986; Wishart et al.,
1995). Without knowledge of the protein’s secondary
structure influencing the chemical shift ranges, only
glycine, alanine, threonine, serine and, to a lesser ex-
tent, valine are uniquely discernible by their chemical
shifts (proline is observed in HN-based spectra only as
the (i−1) residue in certain experiments). Thus, a map-

ping of the result from the assignment process onto
the known amino acid sequence may be used asop-
tional additional constraint in an extended assignment
process. In this extended algorithm, a four-residue
wide window is shifted stepwise along the pseudo-
residue list and residue types identified from Cα/Cβ

shift data are compared with the amino acid patterns of
the sequence. This procedure about doubles the com-
putational time for each assignment run, but is able to
resolve the fragmentation of the resulting assignment
due to overlapping signals. However, it isnot required
for the assignment process, as shown in our test data
below.

Usually the pseudo-residue set has to be refined
iteratively, in order to remove inconsistencies (e.g.,
side-chain amide signals and artifacts) from automat-
ically picked lists. Pseudo-residues with too many or
too few matching signals in respect to the spectrum
are outlined to the user, together with the tolerances
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Figure 2. (Top) Time dependence of the program PASTA on the number of residues used, for runs with and without amino acid identification.
The trend lines indicate CPU time consumption for an ideal case, while specific sequences can take longer, depending on the amount of signal
overlap. (Bottom) CPU time dependence of PASTA on the maximum number of steps for each threshold accepting cycle (for 150 residues with
dEstart= 200).

used. If too many signals are encountered, no auto-
matic decision is made, but a list is given containing
all possible sequential matches. Thus, the automatic
generation of additional false entries in the pseudo-
residue list is avoided. Furthermore, pseudo-residues
which cannot be sequentially connected (e.g., side-
chain amide signals) are identified by the program and
can be cross-checked manually with the spectra.

Ambiguity of data as well as missing signals
are a challenge for automated sequential assignment.
Therefore, a combinatorial minimization strategy was
chosen for the assignment algorithm instead of a deter-
ministic approach. The algorithm of threshold accept-

ing is simple and easy to implement. It contains four
basic steps:

(1) Start at a random solution xi .
(2) Generate a new solution xi+1 via a random local

change of the solution xi.
(3) Judge the quality of both solutions with a

penalty functionf . If the value of the penalty function
for solution xi+1 is not larger than the penalty func-
tion for the solution xi plus a user-defined threshold T,
proceed to solution xi+1; else discard solution xi+1.

if [f (xi+1) ≤f (xi)+ T] then xi+1→ xi (1)
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(4) Repeat steps (2) and (3). If for a user-given
number of steps no improvement of the current min-
imum is achieved, reduce the threshold T stepwise
to zero. The result corresponds to the best solution
encountered during the whole run.

The penalty function or pseudo-energy to be mini-
mized in the sequential assignment is defined as

ETOT = EMATCH{+ESEQ} (2)

EMATCH describes the fit between two adjacent
residues and is added up from the pseudo-energy
contributions for the individual matching sequential
chemical shifts ECα, ECβ, EHα, ECO, and EN. For
the backbone assignment the following weights have
been found to produce the best results:−12 (13Cα),
−12 (13Cβ),−10 (1Hα),−15 (13CO), and−20 (15N).
In case of a mismatch for at least one of the avail-
able sequential shifts, the pseudo-energy for the whole
residue is set to+130 instead; any missing sequential
information is ignored. Within the tolerances set for
the individual nuclei, all matching shifts are equally
accepted; there is no preference for the ‘best match’
to avoid a bias from insignificant chemical shift differ-
ences. The optional term ESEQ is an additional feature
resulting from mapping the initially obtained assign-
ment onto the amino acid sequence as described above
for the extended procedure.

Two different strategies are implemented to obtain
a new solution xi+1 from the existing solution xi:

(1) An interchange of two randomly chosen
residues (the random number generator used is de-
scribed asran3 in Press et al. (1992)).

(2) A ‘cut and paste’ of a larger fragment. The
starting point, length, and new position of the fragment
are again determined by the random number generator.

To allow a global search in the beginning of the
assignment process, the starting value of the thresh-
old (dE) has to be large enough, so that nearly every
solution is accepted by the algorithm. Thus, dEstart
must be larger than the contributions of a mismatch
(130) minus the possible number of matching se-
quential informations (n) weighted with their average
contribution (−15):

dEstart= 130− n · (−15) (3)

This will allow the program in the beginning
even to disrupt a perfectly matching pair of residues
(=loss of n · (−15) bonusunits) and substitute it
with a mismatch (causing an additional 130 units
penalty). No explicit bias is used to preserve already

correctly aligned fragments. During the course of
the PASTA run the pseudo-energies decrease (when
already longer fragments of sequentially matching
residues have been found); at the same time the thresh-
old T for accepting worse solutions is also gradually
lowered. Thus, the algorithm increasingly tends to pre-
serve correctly aligned fragments: if a residuewithin
a correct fragment is interchanged with a nonmatch-
ing residue, the increasing pseudo-energy would now
probably lead to a rejection by the threshold criterion.

The time dependence of the algorithm on the num-
ber of residues is shown in Figure 2a. Without map-
ping the result of the assignment process onto the
amino acid sequence, the correlation is nearly linear.
The extendedversion of the algorithm including the
amino acid identification might show, in the worst
case, a square dependence on the length of the list.
Nevertheless, the average time dependence is linear
even in this case (data not shown).

However, with real data significant deviations from
the theoretical time dependence show up, especially
for runs with amino acid identification. These can be
observed particularly with large or mainlyα-helical
proteins and are due to heavy overlap of the chemi-
cal shift information, causing slower convergence of
the algorithm. This phenomenon is clearly visible in
Figure 2a for list lengths larger than 150 aa.

The expected linear time dependence of PASTA on
the maximum number of steps for each threshold ac-
cepting cycle is shown in Figure 2b. If the number of
steps is set too small for an effective global search for
a given protein, the resulting assignments will show
more than tworeal errors(the definition of real errors
is given below).

The program PASTA was written in ANSI C and
compiled on a Silicon Graphics Indy R4000 (using the
cc -o2command without further optimization). For ba-
sic screen handling thecurses(3X)library routines are
used which are part of the UNIX SVR4. Therefore,
PASTA can be easily ported to all systems support-
ing this package. All input and output is performed
via ASCII files for easy manipulation with com-
mon editors. A regularly updated version of the pro-
gram PASTA will be available via the Internet under
http://ociialf.org.chemie.tu-muenchen.de/people/jl.

Tests on published data
To test the reliability of the algorithm, pseudo-residue
lists were created from the published NMR data of the
following four proteins: interleukin 4 (Powers et al.,
1992), interferonγ (Grzesiek et al., 1992), calmod-
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Table 1. Tolerances for the chemical shifts used in the assign-
ment runs for interferonγ.

Hα protons (ppm) 0.010 0.025 0.035 0.050

Heteronuclei 0.10 0.25 0.35 0.50
13Cα, Cβ, CO (ppm)

Figure 3. Results of 10 assignment runs using the complete data set
with tolerances of 0.010 ppm for the protons and 0.10 ppm for the
heteronuclei in all four proteins. No real error corresponds to 100%,
one real error to about 99% correct assignment, depending on the
length of the different proteins.

ulin (Ikura et al., 1990), and FKBP (Xu et al., 1993).
The sequential information comprised Cα, CO, and Hα

shifts for interferonγ and FKBP, whereas the data sets
for calmodulin and interleukin 4 also included the Cβ

assignments. PASTA assignment runs with the com-
plete data sets were performed for all four proteins;
the amino acid sequence wasnot used as additional
information in any test run. Since ‘perfect’ data sets
were provided, relatively low tolerances of 0.01 ppm
for the Hα protons and 0.1 ppm for the heteronuclei
were used.

In the case of interferonγ the assignment was
repeated with four different sets of chemical shift
tolerances (Table 1).

To test the robustness of PASTA against missing
data, additional data sets lacking various amounts of
sequential information were created from the pseudo-
residue list of interleukin 4:

(1) one specific sequential information removed:
Cα, Cβ, CO, or Hα;

(2) two specific types of sequential information re-
moved: (Cα and Cβ), (CO and Hα), or (Cβ and Hα);
and

(3) randomly removed sequential information:
10%, 20%, or 50%.
All assignment runs were done with a starting thresh-
old of dEstart= 200 and 15 000 steps.

For the evaluation of the time dependence of the
program on the length of the residue list, artificial
residue lists with the following numbers of amino
acids were created from the calmodulin data set (148
aa) (for lists exceeding this length, different stretches
of residues were added from interleukin 4 data): 50,
75, 100, 125, 150, 175, 200. All the above runs were
done with dEstart= 150 and 1000 steps.

For measuring the time dependence on increasing
the search space, the following numbers of steps were
used: 1000, 2000, 5000, 10 000, 15 000, 20 000. These
runs were done with dEstart = 150 and a residue-list
out of calmodulin containing 100 amino acids.

Application to hnps-PLA2
For the assignment of hnps-PLA2 (Kramer et al.,
1989; Seilhamer et al., 1989) a 2D1HN/15N pro-
jection was calculated from the 3D HNCA spectrum
and picked with the Triad/Sybyl peak-picking rou-
tine. The obtained1HN/15N pairs served as input to
create the initial pseudo-residue list. This initial list
was then refined with the optimization algorithm of
the program, using the combination of the peak lists
from the HNCA/HN(CO)CA spectra. The sequential
assignment was carried out first with the Cα infor-
mation only. In a second step, the peak lists of the
HNCACB/HN(CO)CACB or, alternatively, the com-
bination HNCO/HNHA/HCACO were searched on
the basis of the refined pseudo-residue list. The se-
quential assignment was then carried out with the
combinations (Cα, Cβ), (Cα, CO), (Cα, Cβ, protein
sequence), and (Cα, Cβ, CO). Tolerances of 0.15 ppm
were used for Cα, Cβ and CO in all assignment runs.
All assignment runs were done with dEstart= 200 and
15 000 steps. The CPU time per run was about 160
min on an SGI R4600SC/133 MHz.

Results and Discussion

Application to artificial data sets of four published
proteins
The use of artificial data sets from published assign-
ments allows one to judge the quality of the solutions
obtained by the algorithm. Therefore, series of data
sets with decreasing quality of the experimental se-
quential information were used to simulate some as-
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Figure 4. Number of fragments obtained in the calculation of interleukin 4 with artificially reduced data sets. In each case 50% of the sequential
information (Cα, Cβ, CO, Hα) was omitted. This was achieved either by a complete removal of two nuclei (a, b, c) or by random removal of
50% of all four nuclei (d). The bar graphs show the fragmentation distribution for 10 assignment runs for each of the four data sets divided by
the number of real errors.

pects of real data, i.e., missing signals, low resolution
of the spectra and noise. However, in real proteins
the problems are often clustered in certain areas of
the sequence, e.g., signal overlap in unstructured loop
regions or missing signals in regions with internal mo-
tion. In order to demonstrate the program’s ability to
cope with this, the application of PASTA is shown also
for the real data set of hnps-PLA2.

A combinatorial minimization strategy will not
necessarily reach the global minimum, i.e., the cor-
rect assignment, in all cases. Nevertheless, the result

should be a very good solution (i.e., a local mini-
mum) close to the correct assignment. It has to be
distinguished betweenreal errors introduced by the
algorithm (when a sequential residue does not fit with
its precursor, i.e., the algorithm fails to find the ex-
isting global minimum) andfragmentsproduced due
to spectral overlap which cannot be resolved with the
available data. The correct assignment (no real errors)
can easily be recognized among several runs, since
real errorsalwayslead to an increase in the pseudo-
energy. In the case of fragmentation it is not possible
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Figure 5. Percentage of correct assignment obtained in the different runs described in Figure 4. Even with significant signal overlap, the number
of correctly aligned residues is on average more than 95% (broken lines).

to determine the global minimum without further in-
formation, since several equally valid solutions exist
with respect to the input data. In all of the follow-
ing assignment runs using artificial data, the proline
residues were included. Thus, only the first element
in the list has no sequential information, resulting in
one or two fragments in all runs without any real error.
This is defined as a 100% correct assignment.

The real errors are randomly distributed over the
sequence and their number is not dependent on the
amount of information. With regard to the complete
data sets of all four test proteins, 55% of the runs
do not contain a single real error and 45% contain
one real error. In the case of interleukin 4, several
sets of reduced information were tested additionally.
These were created by omitting one type of sequential
information, i.e., by removing all chemical shifts of
either Cα, Cβ, CO, or Hα, or by removing a certain
percentage of data selected randomly from the chem-

ical shifts of Cα, Cβ, CO, and Hα. No major changes
in the performance of the algorithm with regard to the
number of real errors were observed (data not shown).

Using the complete artificial data sets and small
tolerances, a 100% correct assignment is achieved for
all four test proteins in at least three out of 10 runs
(Figure 3). In the other runs, with one real error, three
large fragments were produced (ca. 99% correct as-
signment, depending on the length of the different
proteins).

After the complete removal of one of the four types
of sequential information (Cα, Cβ, CO, or Hα) from the
interleukin 4 data set, no significant differences in the
results were observed (data not shown).

The situation changes slightly if two types of se-
quential information are completely removed. While
the number of real errors stays constant (see above), an
increase in the number of fragments is observed, due
to the higher ambiguity of the input data (Figure 4).
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Figure 6. Average number of fragments in the assignment of in-
terferonγ using different tolerance limits. It is obvious that only
unrealistically large tolerance limits of 0.05 ppm for the Hα protons
and 0.50 ppm for the carbon chemical shifts yield an unacceptable
number of fragments.

Here, the increased overlap between the remaining
sequential information creates a plateau in the solu-
tion space, i.e., up to more than 10 fragments without
real error, which would cause a ‘combinatorial ex-
plosion’ in the straightforward approach. The average
number of fragments produced depends on the type of
the remaining sequential information. Under these cir-
cumstances, the best performance is given with 50%
of the data randomly removed. Fragmentation due to
informational degeneracy is an important fact when
handling real data. The maximum number of frag-
ments depends only on the specific chemical shifts and
the tolerances used. However, this number is often
not reached, because the correct successor is chosen
accidentally for a residue at a fragmentation site. All
possible fragmentation sites are outlined by PASTA
and all alternative matching sequential residues are
given, so that the correct sequential ordering can easily
be found manually.

The differences in overall performance (Figure 5a–
c) for the partial sets (Cα/Cβ, Cβ/Hα or CO/Hα, re-
moved, respectively) can be correlated to the various

degree of overlap (i.e., chemical shift dispersion) for
the different types of remaining nuclei, especially in an
α-helical protein like interleukin 4. The overall perfor-
mance is on average 95% of the residues obtained in
correct sequential order, in the worst case still 91.7%.
When 50% of the sequential information is removed,
the best results are achieved with the deletions occur-
ring randomly. Here the program still finds the correct
assignment in five out of 10 runs (Figure 5d).

The influence of changing the tolerances for the
match between the shifts on the assignment is shown
in Figure 6. With tolerances up to 0.035 ppm for the
Hα protons and 0.35 ppm for the heteronuclei, the
correct assignment is achieved nearly without frag-
menting the resulting residue string. Only unreason-
ably high tolerances like 0.050 ppm for the Hα protons
and 0.50 ppm for the heteronuclei lead to an increased
number of fragments (22 fragments on average) in
the output. Here again the ambiguity of the input
data is too high to receive less fragmentation without
additional information.

On the other hand, the algorithm is sensitive to
wrong chemical shifts within a pseudo-residue, espe-
cially when small tolerances are used. These wrong
shift values occur only when noise peaks are mis-
taken for actually missing signals in the peak-picking
process. If the expected number of signals is found,
then the wrongly picked peaks are not recognized by
the program and give rise to real errors in the assign-
ment, always occurring at the same pseudo-residue
and resulting in increased fragmentation. Hence, such
misassignments have to be carefully eliminated by
manually counterchecking the spectra.

Application to hnps-PLA2
The semiautomatic backbone assignment of hnps-
PLA2 (124 residues) was done independently from
manual assignment. An initial set of 155 pseudo-
residues, including noise and the side-chain amides,
was obtained from the15N-HSQC. Since the se-
quence of hnps-PLA2 contains two prolines (Pro36,
Pro122) and the N-terminal residue is not easily ob-
servable, 121 pseudo-residues were expected. The
pseudo-residue list was refined manually using the
HNCA and HN(CO)CA spectra, i.e., only residues
with one cross peak from the HN(CO)CA and at
least one from the HNCA were kept. In addition,
pseudo-residues containing side-chain amide signals
were eliminated. This procedure led to a final list
containing 114 residues. The further processing of
the data is shown in Figure 7. Furthermore, no spec-
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Figure 7. Diagram of the semiautomated assignment of hnps-PLA2. The pseudo-residue list containing 114 residues was obtained from an
initial 15N-HSQC list by identifying noise and side-chain signals using HNCA and HN(CO)CA spectra. Using the Cα sequential information
as a starting point, either the Cβ or the CO data were added to get a sufficient amount of information to reach the correct assignment. However,
an unequivocal assignment was only possible by using all three types of sequential information.

tral data were found for the residues Leu2, Phe23,
Tyr24, Cys77, Tyr111, Tyr112, and Ser113 (Schwarz
et al., 1997). Because the algorithm did not use any
protein sequence information, at least the six frag-
ments Val3–Gly22, Gly25–Ser35, Lys37–Tyr76, Ale78–
Gln110, Asn114–Thr121, and Arg123–Cys124 have to be
contained in the solution. Therefore, an assignment
containing exactly these six fragments has to be con-
sidered complete (corresponding to 100% in analogy
to the definition given above).

Even with tolerances as small as 0.15 ppm, the
Cα chemical shifts strongly overlap in this mainly
α-helical protein (Figures 8a and b). With only the
Cα sequential information available, fragments with
an average length of 4–5 correctly ordered residues
were obtained, resulting in a total number of about 25
fragments. Therefore, a second sequential information
had to be supplied. The assignment was repeated al-
ternatively with the combinations Cα/Cβ and Cα/CO.
Now the program reproduced assignments without any
real error for both data sets. Although the correct as-
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Figure 8. 600 MHz HNCA spectrum from hnps-PLA2. (Top) The overlap problem is demonstrated by selected strips from the HNCA spectrum
sorted by their Cα chemical shifts. The tolerance limit of 0.15 ppm is indicated by the shaded bar. It is evident that considerable overlap in
the Cα region is still found in this well-resolved spectrum. (Bottom) Assignment walk from residues Cys83 to Arg100 according to the PASTA
sequential alignment based on all three sequential informations.

signment is amongst the solutions obtained, it cannot
be distinguished from other valid solutions produced
by the algorithm due to the degeneracy of the mini-
mum. This is also indicated by the fragmentation of
the list for the runs without real errors, resulting in
9.2 fragments on average for the Cα/Cβ combination
and 11 fragments for the Cα/CO combination. In or-
der to determine the correct solution, i.e., the global
minimum, the CO shifts were included in further runs
as additional independent constraints. In this way, it

was possible for PASTA to reproduce the full assign-
ment, which was independently obtained by manual
evaluation (Figure 7).

Conclusions

It has been shown that PASTA reliably reproduces the
correct assignment for the artificial data sets of inter-
leukin 4, interferonγ, calmodulin, and FKBP without
using the primary sequence or the proton side-chain
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information. The algorithm is stable in its solutions; in
all assignment runs it reaches solutions very close to
the global minimum or even the minimum itself (100%
correct assignment). The program is able to overcome
up to 50% randomly missing signals and still aligns
more than 90% of the residues correctly. Overlap of
backbone information may lead to a fragmentation
of the resulting data list. Nevertheless, when mapped
onto the sequence, the correct assignment is easily ob-
tained. The backbone resonances of hnps-PLA2 were
correctly assigned by PASTA, using automatically
picked peak lists of several triple-resonance spectra.
The results of the minimization based on the sequen-
tial information for Cα/Cβ and Cα/CO both included
the correct sequence among other possible solutions
which are to be considered equally valid from the
algorithm’s point of view. Thus, additional informa-
tion was necessary to enable the program to find the
true global minimum. This can be accomplished when
amino acid type determination (from Cα and Cβ shifts)
is used in combination with knowledge of the pro-
tein sequence. However, withthreeindependent types
of sequential information (Cα/Cβ/CO), no knowledge
of the primary structure was necessary to obtain the
correct sequential assignment.

PASTA is a valuable tool in accelerating the te-
dious backbone assignment process using variable sets
of backbone information. The core algorithm can be
easily expanded to include new sequential information
(such as proton spin systems) for a further reduction
of the search space for the sequential assignment, in
order to enhance the automatic assignment capabilities
of the program.
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Note

A prototype of the program was presented at the 12th
European Experimental NMR Conference in Oulu,
Finland, 1994 (poster W118). In this early phase
of the project, with only the minimization strategy
implemented in the actual form, the program as-
signed IIBGlc (Eberstadt et al., 1996), a small pro-

tein with 94 residues, based on the peak lists of
HNCA/CBCA(CO)NH and HN(CA)CO/HNCO.

The ab initio assignment of two proteins, IIBMan

(Gschwind et al., 1997) with 168 residues and nusB
(Berglechner et al., 1997) comprising 139 residues,
was done by PASTA in our group, following a strategy
similar to the assignment of hnps-PLA2. Work is in
progress to include side-chain and NOE information
in order to fully automate the assignment process.
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